论文标题
野外凝视的对象检测
Gaze-based Object Detection in the Wild
论文作者
论文摘要
在人类机器人的合作中,一个具有挑战性的任务是教机器人新的但未知的对象,使其能够与它们互动。因此,目光可以包含有价值的信息。我们研究是否仅从凝视数据中检测对象(对象或无对象)并确定其边界框参数。为此,我们探索了不同尺寸的时间窗口,这些尺寸是计算热图的基础,即凝视数据的空间分布。此外,我们分析了这些热图的不同网格大小,并使用不同的机器学习技术在概念证明中演示了功能。我们的方法的特征是它的速度和资源效率与常规对象探测器相比。为了生成所需的数据,我们对五个可以自由移动的受试者进行了一项研究,从而转向任意对象。这样,我们为数据收集选择了一种场景,该方案尽可能现实。由于受试者在面向物体时移动,因此热图还包含凝视数据轨迹,使检测和参数回归变得复杂。我们将数据集公开向研究社区公开下载。
In human-robot collaboration, one challenging task is to teach a robot new yet unknown objects enabling it to interact with them. Thereby, gaze can contain valuable information. We investigate if it is possible to detect objects (object or no object) merely from gaze data and determine their bounding box parameters. For this purpose, we explore different sizes of temporal windows, which serve as a basis for the computation of heatmaps, i.e., the spatial distribution of the gaze data. Additionally, we analyze different grid sizes of these heatmaps, and demonstrate the functionality in a proof of concept using different machine learning techniques. Our method is characterized by its speed and resource efficiency compared to conventional object detectors. In order to generate the required data, we conducted a study with five subjects who could move freely and thus, turn towards arbitrary objects. This way, we chose a scenario for our data collection that is as realistic as possible. Since the subjects move while facing objects, the heatmaps also contain gaze data trajectories, complicating the detection and parameter regression. We make our data set publicly available to the research community for download.