论文标题

无界域中的自适应赫米特光谱方法

Adaptive Hermite Spectral Methods in Unbounded Domains

论文作者

Chou, Tom, Shao, Sihong, Xia, Mingtao

论文摘要

最近,开发了新的自适应技术,可以大大提高使用光谱方法求解PDE的效率。这些自适应光谱技术特别适合于在无界域中准确解决问题,并需要对三个关键可调参数进行监视和动态调整:缩放系数,基础函数的位移以及光谱膨胀顺序。对于无界域问题的数值方法的分析很少。具体而言,没有对自适应光谱方法的分析,可以通过动态调整参数来提供有关如何提高效率和准确性的见解。在本文中,我们在单一和多维问题中使用广义的Hermite函数对自适应光谱方法进行了第一个数值分析。我们的分析揭示了当控制数值解决方案的“频率指示器”时,自适应光谱方法为什么可以很好地工作。然后,我们研究了自适应光谱方法的实现如何影响数值结果,从而为参数的正确调整提供了指南。最后,我们通过扩展自适应方法来进一步提高性能,以允许双向基础函数翻译,以及进行类似的数值分析的前景,以解决由使用自适应光谱方法进行现实的难以解决的无界模型引起的PDE的前景。

Recently, new adaptive techniques were developed that greatly improved the efficiency of solving PDEs using spectral methods. These adaptive spectral techniques are especially suited for accurately solving problems in unbounded domains and require the monitoring and dynamic adjustment of three key tunable parameters: the scaling factor, the displacement of the basis functions, and the spectral expansion order. There have been few analyses of numerical methods for unbounded domain problems. Specifically, there is no analysis of adaptive spectral methods to provide insight into how to increase efficiency and accuracy through dynamical adjustment of parameters. In this paper, we perform the first numerical analysis of the adaptive spectral method using generalized Hermite functions in both one- and multi-dimensional problems. Our analysis reveals why adaptive spectral methods work well when a "frequency indicator" of the numerical solution is controlled. We then investigate how the implementation of the adaptive spectral methods affects numerical results, thereby providing guidelines for the proper tuning of parameters. Finally, we further improve performance by extending the adaptive methods to allow bidirectional basis function translation, and the prospect of carrying out similar numerical analysis to solving PDEs arising from realistic difficult-to-solve unbounded models with adaptive spectral methods is also briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源