论文标题
将无晶格的MMI集成到端到端的语音识别
Integrating Lattice-Free MMI into End-to-End Speech Recognition
论文作者
论文摘要
在自动语音识别(ASR)研究中,歧视性标准在DNN-HMM系统中取得了出色的性能。鉴于这一成功,采用判别标准是有望提高端到端(E2E)ASR系统的性能。有了这一动机,以前的作品将最小贝叶斯风险(MBR,歧视性标准之一)引入了E2E ASR系统。但是,基于MBR的方法的有效性和效率受到损害:MBR标准仅用于系统培训,这在训练和解码之间造成了不匹配;基于MBR的方法中的即时解码过程导致需要预先训练的模型和慢速训练速度。为此,在这项工作中提出了新的算法,以整合另一种广泛使用的判别标准,无晶格的最大共同信息(LF-MMI),不仅在训练阶段,而且在解码过程中。提出的LF-MMI训练和解码方法显示了它们在两个广泛使用的E2E框架上的有效性:基于注意力的编码器解码器(AEDS)和神经传感器(NTS)。与基于MBR的方法相比,提出的LF-MMI方法:保持训练和解码之间的一致性;避开直立的解码过程;来自具有卓越训练效率的随机初始化模型的火车。实验表明,LF-MMI方法的表现优于其MBR对应物,并且一致地导致各种框架和数据集的统计显着性能改善从30小时到14.3k小时。所提出的方法在Aishell-1(CER 4.10%)和Aishell-2(CER 5.02%)数据集上实现了最新的(SOTA)。代码已发布。
In automatic speech recognition (ASR) research, discriminative criteria have achieved superior performance in DNN-HMM systems. Given this success, the adoption of discriminative criteria is promising to boost the performance of end-to-end (E2E) ASR systems. With this motivation, previous works have introduced the minimum Bayesian risk (MBR, one of the discriminative criteria) into E2E ASR systems. However, the effectiveness and efficiency of the MBR-based methods are compromised: the MBR criterion is only used in system training, which creates a mismatch between training and decoding; the on-the-fly decoding process in MBR-based methods results in the need for pre-trained models and slow training speeds. To this end, novel algorithms are proposed in this work to integrate another widely used discriminative criterion, lattice-free maximum mutual information (LF-MMI), into E2E ASR systems not only in the training stage but also in the decoding process. The proposed LF-MMI training and decoding methods show their effectiveness on two widely used E2E frameworks: Attention-Based Encoder-Decoders (AEDs) and Neural Transducers (NTs). Compared with MBR-based methods, the proposed LF-MMI method: maintains the consistency between training and decoding; eschews the on-the-fly decoding process; trains from randomly initialized models with superior training efficiency. Experiments suggest that the LF-MMI method outperforms its MBR counterparts and consistently leads to statistically significant performance improvements on various frameworks and datasets from 30 hours to 14.3k hours. The proposed method achieves state-of-the-art (SOTA) results on Aishell-1 (CER 4.10%) and Aishell-2 (CER 5.02%) datasets. Code is released.