论文标题

BARC:通过利用品种信息来学习从图像中回归3D狗形状

BARC: Learning to Regress 3D Dog Shape from Images by Exploiting Breed Information

论文作者

Rueegg, Nadine, Zuffi, Silvia, Schindler, Konrad, Black, Michael J.

论文摘要

我们的目标是从单个图像中恢复3D形状和姿势。这是一项艰巨的任务,因为狗表现出各种形状和外表,并且高度阐明。最近的工作提出了从图像中直接带有其他肢体量表参数的Smal动物模型。我们的方法称为BARC(使用分类的品种调查回归),以几种重要方式超越了先前的工作。首先,我们修改SMAL形状空间,以更适合表示狗形状。但是,即使具有更好的形状模型,从图像中回归狗形状的问题仍然具有挑战性,因为我们缺少具有3D地面真相的配对图像。为了弥补缺乏配对数据的缺乏,我们制定了利用有关狗品种信息的新损失。特别是,我们利用了同一品种的狗具有相似的身体形状的事实。我们制定了一个新型的品种相似性损失,包括两个部分:一个术语鼓励同一品种的狗形状比不同品种的狗更相似。第二个是品种分类损失,有助于产生可识别的品种特异性形状。通过消融研究,我们发现我们的品种损失显着提高了没有它们的基线的形状准确性。我们还通过具有感知研究的WLDO定性地将BARC比较,并发现我们的方法产生的狗更为现实。这项工作表明,有关遗传相似性的A-Priori信息可以帮助弥补缺乏3D培训数据。这个概念可能适用于其他动物物种或种类。我们的代码可在https://barc.is.tue.mpg.de/上公开使用。

Our goal is to recover the 3D shape and pose of dogs from a single image. This is a challenging task because dogs exhibit a wide range of shapes and appearances, and are highly articulated. Recent work has proposed to directly regress the SMAL animal model, with additional limb scale parameters, from images. Our method, called BARC (Breed-Augmented Regression using Classification), goes beyond prior work in several important ways. First, we modify the SMAL shape space to be more appropriate for representing dog shape. But, even with a better shape model, the problem of regressing dog shape from an image is still challenging because we lack paired images with 3D ground truth. To compensate for the lack of paired data, we formulate novel losses that exploit information about dog breeds. In particular, we exploit the fact that dogs of the same breed have similar body shapes. We formulate a novel breed similarity loss consisting of two parts: One term encourages the shape of dogs from the same breed to be more similar than dogs of different breeds. The second one, a breed classification loss, helps to produce recognizable breed-specific shapes. Through ablation studies, we find that our breed losses significantly improve shape accuracy over a baseline without them. We also compare BARC qualitatively to WLDO with a perceptual study and find that our approach produces dogs that are significantly more realistic. This work shows that a-priori information about genetic similarity can help to compensate for the lack of 3D training data. This concept may be applicable to other animal species or groups of species. Our code is publicly available for research purposes at https://barc.is.tue.mpg.de/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源