论文标题

使用进化对称神经网络的无碰撞导航

Collision-Free Navigation using Evolutionary Symmetrical Neural Networks

论文作者

Eraqi, Hesham M., Nagiub, Mena, Sidra, Peter

论文摘要

避免碰撞系统在减少车辆事故的数量和挽救人类生命方面起着至关重要的作用。本文使用进化神经网络扩展了先前的工作,以避免反应性碰撞。我们提出了一种称为对称神经网络的新方法。该方法通过在网络权重之间执行约束,从而改善了模型的性能,从而减少了模型优化搜索空间,因此,可以更准确地控制车辆转向以改进操作。使用仿真环境进行培训和验证过程 - 代码库可公开使用。进行了广泛的实验以分析提出的方法并评估其性能。该方法在几种模拟驾驶场景中进行了测试。此外,我们分析了测距仪传感器分辨率和噪声对反应性碰撞避免的总体目标的影响。最后,我们测试了所提出方法的概括。结果令人鼓舞;提出的方法改善了模型的学习曲线,用于培训方案和对新测试方案的概括。使用约束权重可以显着改善遗传算法优化所需的世代数量。

Collision avoidance systems play a vital role in reducing the number of vehicle accidents and saving human lives. This paper extends the previous work using evolutionary neural networks for reactive collision avoidance. We are proposing a new method we have called symmetric neural networks. The method improves the model's performance by enforcing constraints between the network weights which reduces the model optimization search space and hence, learns more accurate control of the vehicle steering for improved maneuvering. The training and validation processes are carried out using a simulation environment - the codebase is publicly available. Extensive experiments are conducted to analyze the proposed method and evaluate its performance. The method is tested in several simulated driving scenarios. In addition, we have analyzed the effect of the rangefinder sensor resolution and noise on the overall goal of reactive collision avoidance. Finally, we have tested the generalization of the proposed method. The results are encouraging; the proposed method has improved the model's learning curve for training scenarios and generalization to the new test scenarios. Using constrained weights has significantly improved the number of generations required for the Genetic Algorithm optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源