论文标题

使用量子卷积神经网络与混合量子式学习的多类分类

Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning

论文作者

Bokhan, Denis, Mastiukova, Alena S., Boev, Aleksey S., Trubnikov, Dmitrii N., Fedorov, Aleksey K.

论文摘要

例如,多类分类对于各种应用程序引起了极大的兴趣,例如,它是计算机视觉中的常见任务,其中需要将图像分为三个或更多类。在这里,我们提出了一种基于量子卷积神经网络的量子机学习方法,用于解决多类分类问题。相应的学习过程是通过TensorFlowquantum作为混合量子 - 古典(变分)模型实现的,其中量子输出结果被送入SoftMax激活函数,随后通过优化量子电路的参数来最小化交叉熵损失。我们这里的概念改进包括一个新的量子感知器的新模型和量子电路的优化结构。我们使用建议的方法使用八个量子位用于数据编码和四个Ancilla Qubits解决MNIST数据集的4类分类问题;三级分类问题已经获得了先前的结果。我们的结果表明,解决方案的精度类似于具有可比数量的可训练参数的经典卷积神经网络。我们希望我们的发现为使用量子神经网络迈出了新的一步,以解决NISQ时代及以后的相关问题。

Multiclass classification is of great interest for various applications, for example, it is a common task in computer vision, where one needs to categorize an image into three or more classes. Here we propose a quantum machine learning approach based on quantum convolutional neural networks for solving the multiclass classification problem. The corresponding learning procedure is implemented via TensorFlowQuantum as a hybrid quantum-classical (variational) model, where quantum output results are fed to the softmax activation function with the subsequent minimization of the cross entropy loss via optimizing the parameters of the quantum circuit. Our conceptional improvements here include a new model for a quantum perceptron and an optimized structure of the quantum circuit. We use the proposed approach to solve a 4-class classification problem for the case of the MNIST dataset using eight qubits for data encoding and four ancilla qubits; previous results have been obtained for 3-class classification problems. Our results show that accuracies of our solution are similar to classical convolutional neural networks with comparable numbers of trainable parameters. We expect that our finding provide a new step towards the use of quantum neural networks for solving relevant problems in the NISQ era and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源