论文标题

因果推理中稀疏方法的信息标准

Information criteria for sparse methods in causal inference

论文作者

Ninomiya, Yoshiyuki

论文摘要

对于倾向分析和稀疏估计,我们开发了一个信息标准,用于确定变量选择中所需的正则参数。首先,对于基于高斯分布的因果推断模型,我们扩展了Stein的无偏风险估计理论,该理论导致了广义的CP标准,在常规稀疏估计中几乎没有弱点,并得出了无需诉诸于渐变的标准的倒数稀疏稀疏估计版本。接下来,对于不一定是基于高斯分布的一般因果推理模型,我们将渐近理论扩展到套索上的渐进分数分析,目的是实施双重强大的稀疏估计。从渐近理论中,给出了用于反概率加权稀疏估计的AIC型信息标准,然后得出具有双重鲁棒性的标准,以实现双重鲁棒性,以进行双重稳健的稀疏估计。数值实验比较了提出的标准与正式论证中得出的现有标准,并验证所提出的标准在几乎所有情况下都优越,在许多情况下,差异在许多情况下不可忽略,并且可变选择的结果显着差异。实际数据分析证实,通过这些标准的变量选择和估计之间的差异实际上很大。最后,对使用组套索,弹性净和非凸正则化的一般稀疏估计的概括是为了表明所提出的标准是高度扩展的。

For propensity score analysis and sparse estimation, we develop an information criterion for determining the regularization parameters needed in variable selection. First, for Gaussian distribution-based causal inference models, we extend Stein's unbiased risk estimation theory, which leads to a generalized Cp criterion that has almost no weakness in conventional sparse estimation, and derive an inverse-probability-weighted sparse estimation version of the criterion without resorting to asymptotics. Next, for general causal inference models that are not necessarily Gaussian distribution-based, we extend the asymptotic theory on LASSO for propensity score analysis, with the intention of implementing doubly robust sparse estimation. From the asymptotic theory, an AIC-type information criterion for inverse-probability-weighted sparse estimation is given, and then a criterion with double robustness in itself is derived for doubly robust sparse estimation. Numerical experiments compare the proposed criterion with the existing criterion derived from a formal argument and verify that the proposed criterion is superior in almost all cases, that the difference is not negligible in many cases, and that the results of variable selection differ significantly. Real data analysis confirms that the difference between variable selection and estimation by these criteria is actually large. Finally, generalizations to general sparse estimation using group LASSO, elastic net, and non-convex regularization are made in order to indicate that the proposed criterion is highly extensible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源