论文标题

特征力:结构多样的车道的数据驱动的车道描述符

Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes

论文作者

Jin, Dongkwon, Park, Wonhui, Jeong, Seong-Gyun, Kwon, Heeyeon, Kim, Chang-Su

论文摘要

本文提出了一种新型算法,以检测特征力空间中的道路车道。首先,我们介绍了特征力的概念,这些概念是针对结构上多样化车道的数据驱动的描述符,包括弯曲和直线泳道。为了获得特征力,我们执行包含训练集中所有车道的车道矩阵的最佳排名M近似。其次,我们通过将训练车道聚集在特征力空间中来生成一组候选车道。第三,使用车道候选者,我们通过开发基于锚固的检测网络(称为SIIC-NET)来确定一组最佳的车道。实验结果表明,所提出的算法为结构多样的车道提供了出色的检测性能。我们的代码可在https://github.com/dongkwonjin/eigenlanes上找到。

A novel algorithm to detect road lanes in the eigenlane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M approximation of a lane matrix containing all lanes in a training set. Second, we generate a set of lane candidates by clustering the training lanes in the eigenlane space. Third, using the lane candidates, we determine an optimal set of lanes by developing an anchor-based detection network, called SIIC-Net. Experimental results demonstrate that the proposed algorithm provides excellent detection performance for structurally diverse lanes. Our codes are available at https://github.com/dongkwonjin/Eigenlanes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源