论文标题
不确定性意识适应自我监督的3D人姿势估计
Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose Estimation
论文作者
论文摘要
单眼3D人类姿势估计的进展主要由需要大规模2D/3D姿势注释的监督技术。在没有任何规定丢弃陌生的分布数据的情况下,这种方法通常会不稳定地行为。为此,我们将3D人类姿势学习视为无监督的领域适应问题。我们介绍MRP-NET,该网络构成了一个常见的深网骨干线,其中两个输出头订阅了两个不同的配置。 a)无模型的关节定位和b)基于模型的参数回归。这样的设计使我们能够得出合适的措施,以量化姿势和关节水平粒度的预测不确定性。在仅在标记的合成样本上进行监督,适应过程旨在最大程度地减少未标记的目标图像的不确定性,同时最大限度地将其最大化,以使极端分发数据集(背景)最大化。除了合成到现实的3D姿势适应外,即使在存在遮挡和截断场景的情况下,联合判决也允许扩展适应性以在野外图像上工作。我们对拟议方法进行了全面的评估,并在基准数据集上展示了最先进的性能。
The advances in monocular 3D human pose estimation are dominated by supervised techniques that require large-scale 2D/3D pose annotations. Such methods often behave erratically in the absence of any provision to discard unfamiliar out-of-distribution data. To this end, we cast the 3D human pose learning as an unsupervised domain adaptation problem. We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations; a) model-free joint localization and b) model-based parametric regression. Such a design allows us to derive suitable measures to quantify prediction uncertainty at both pose and joint level granularity. While supervising only on labeled synthetic samples, the adaptation process aims to minimize the uncertainty for the unlabeled target images while maximizing the same for an extreme out-of-distribution dataset (backgrounds). Alongside synthetic-to-real 3D pose adaptation, the joint-uncertainties allow expanding the adaptation to work on in-the-wild images even in the presence of occlusion and truncation scenarios. We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.