论文标题
部分可观测时空混沌系统的无模型预测
Text2Pos: Text-to-Point-Cloud Cross-Modal Localization
论文作者
论文摘要
与移动设备和家用电器的基于自然语言的沟通变得越来越流行,并有可能在将来与移动机器人进行自然沟通。为了实现这一目标,我们调查了跨模式的文本到点云的本地化,这将使我们能够指定例如车辆接送或货物交付位置。特别是,我们提出了Text2Pos,这是一种跨模式定位模块,该模块学会以粗略的方式将文本描述与本地化线索相结合。给定环境的点云,Text2POS定位了通过基于自然语言的周围环境的描述来指定的位置。为了培训Text2POS并研究其性能,我们构建了Kitti360Pose,这是该任务的第一个基于最近引入的Kitti360数据集的数据集。我们的实验表明,我们可以将65%的文本查询定位在15m距离内,以查询在检索到前10个位置的查询位置。这是我们希望将未来发展引发到基于语言的导航的起点。
Natural language-based communication with mobile devices and home appliances is becoming increasingly popular and has the potential to become natural for communicating with mobile robots in the future. Towards this goal, we investigate cross-modal text-to-point-cloud localization that will allow us to specify, for example, a vehicle pick-up or goods delivery location. In particular, we propose Text2Pos, a cross-modal localization module that learns to align textual descriptions with localization cues in a coarse- to-fine manner. Given a point cloud of the environment, Text2Pos locates a position that is specified via a natural language-based description of the immediate surroundings. To train Text2Pos and study its performance, we construct KITTI360Pose, the first dataset for this task based on the recently introduced KITTI360 dataset. Our experiments show that we can localize 65% of textual queries within 15m distance to query locations for top-10 retrieved locations. This is a starting point that we hope will spark future developments towards language-based navigation.