论文标题

部分可观测时空混沌系统的无模型预测

LiDAR Snowfall Simulation for Robust 3D Object Detection

论文作者

Hahner, Martin, Sakaridis, Christos, Bijelic, Mario, Heide, Felix, Yu, Fisher, Dai, Dengxin, Van Gool, Luc

论文摘要

3D对象检测是自动驾驶等应用程序的核心任务,即使在存在不利天气的情况下,系统也需要将周围的交通代理本地化和分类。在本文中,我们解决了基于激光雷达的3D对象检测降雪下的问题。由于难以在此环境中收集和注释训练数据,我们提出了一种基于物理的方法,以模拟降雪对真正的晴朗雨痛点云的影响。我们的方法为每条LiDAR系列中的2D空间中的雪颗粒采样,并使用诱导的几何形状相应地修改每个LiDAR束的测量值。此外,由于降雪通常会导致地面湿度,我们还模拟了LiDar Point云上的地面湿度。我们使用仿真来生成部分合成的雪龙数据数据,并利用这些数据来训练3D对象检测模型,这些模型对降雪而言是可靠的。我们使用几种最先进的3D对象检测方法进行了广泛的评估,并表明我们的仿真始终在与透明的天气基线和竞争模拟方法相比,在真实的Snowy STF数据集上始终获得显着的性能提高,而在清晰的天气中并没有牺牲性能。我们的代码可在www.github.com/syscv/lidar_snow_sim上找到。

3D object detection is a central task for applications such as autonomous driving, in which the system needs to localize and classify surrounding traffic agents, even in the presence of adverse weather. In this paper, we address the problem of LiDAR-based 3D object detection under snowfall. Due to the difficulty of collecting and annotating training data in this setting, we propose a physically based method to simulate the effect of snowfall on real clear-weather LiDAR point clouds. Our method samples snow particles in 2D space for each LiDAR line and uses the induced geometry to modify the measurement for each LiDAR beam accordingly. Moreover, as snowfall often causes wetness on the ground, we also simulate ground wetness on LiDAR point clouds. We use our simulation to generate partially synthetic snowy LiDAR data and leverage these data for training 3D object detection models that are robust to snowfall. We conduct an extensive evaluation using several state-of-the-art 3D object detection methods and show that our simulation consistently yields significant performance gains on the real snowy STF dataset compared to clear-weather baselines and competing simulation approaches, while not sacrificing performance in clear weather. Our code is available at www.github.com/SysCV/LiDAR_snow_sim.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源