论文标题

域知识驱动的伪标签,用于可解释的目标条件的交互式轨迹预测

Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned Interactive Trajectory Prediction

论文作者

Sun, Lingfeng, Tang, Chen, Niu, Yaru, Sachdeva, Enna, Choi, Chiho, Misu, Teruhisa, Tomizuka, Masayoshi, Zhan, Wei

论文摘要

在高度互动的场景中进行运动预测是自主驾驶中的一个具有挑战性的问题。在这种情况下,我们需要准确预测相互作用的代理的共同行为,以确保自动驾驶汽车的安全有效航行。最近,由于其在性能方面的优势和捕获轨迹分布中多模式的能力,目标条件的方法引起了人们的关注。在这项工作中,我们研究了目标条件框架的联合轨迹预测问题。特别是,我们介绍了一个有条件的基于AutoEncoder(CVAE)模型,以将不同的相互作用模式明确编码到潜在空间中。但是,我们发现香草模型遭受后塌陷,无法根据需要引起信息的潜在空间。为了解决这些问题,我们提出了一种新颖的方法,以避免KL消失并诱导具有伪标签的可解释的互动潜在空间。提出的伪标签使我们能够以灵活的方式将域知识纳入有关相互作用的知识。我们使用说明性玩具示例激励提出的方法。此外,我们在Waymo打开运动数据集上验证了我们的框架,并既有定量和定性评估。

Motion forecasting in highly interactive scenarios is a challenging problem in autonomous driving. In such scenarios, we need to accurately predict the joint behavior of interacting agents to ensure the safe and efficient navigation of autonomous vehicles. Recently, goal-conditioned methods have gained increasing attention due to their advantage in performance and their ability to capture the multimodality in trajectory distribution. In this work, we study the joint trajectory prediction problem with the goal-conditioned framework. In particular, we introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space. However, we discover that the vanilla model suffers from posterior collapse and cannot induce an informative latent space as desired. To address these issues, we propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels. The proposed pseudo labels allow us to incorporate domain knowledge on interaction in a flexible manner. We motivate the proposed method using an illustrative toy example. In addition, we validate our framework on the Waymo Open Motion Dataset with both quantitative and qualitative evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源