论文标题
TL-GAN:通过数据综合来改善交通信号识别自动驾驶
TL-GAN: Improving Traffic Light Recognition via Data Synthesis for Autonomous Driving
论文作者
论文摘要
交通信号识别是自动驾驶车辆感知模块的关键组成部分,在智能运输系统中起着至关重要的作用。基于深度学习的流量识别方法在大量和丰富的培训数据多样性方面很大程度上取决于。但是,在各种罕见情况(例如闪烁,停电或极端天气)中收集数据非常具有挑战性,从而导致培训数据的分布不平衡,因此在识别稀有类别的情况下降低了性能。在本文中,我们试图通过利用数据综合来改善交通信号识别。受生成对抗网络(GAN)的启发,我们提出了一种新型的交通灯生成方法TL-GAN,以合成稀有类别的数据,以改善自动驾驶的交通光识别。 TL-GAN将交通信号序列的生成产生到图像合成和序列组装中。在图像合成阶段,我们的方法使有条件的生成可以完全控制生成的交通灯图像的颜色。在序列组装阶段,我们设计了样式混合和自适应模板,以综合现实和多样化的交通灯序列。广泛的实验表明,拟议的TL-GAN对基线的改进而无需使用生成的数据,与用于一般图像合成和数据不平衡处理的竞争算法相比,导致最先进的性能。
Traffic light recognition, as a critical component of the perception module of self-driving vehicles, plays a vital role in the intelligent transportation systems. The prevalent deep learning based traffic light recognition methods heavily hinge on the large quantity and rich diversity of training data. However, it is quite challenging to collect data in various rare scenarios such as flashing, blackout or extreme weather, thus resulting in the imbalanced distribution of training data and consequently the degraded performance in recognizing rare classes. In this paper, we seek to improve traffic light recognition by leveraging data synthesis. Inspired by the generative adversarial networks (GANs), we propose a novel traffic light generation approach TL-GAN to synthesize the data of rare classes to improve traffic light recognition for autonomous driving. TL-GAN disentangles traffic light sequence generation into image synthesis and sequence assembling. In the image synthesis stage, our approach enables conditional generation to allow full control of the color of the generated traffic light images. In the sequence assembling stage, we design the style mixing and adaptive template to synthesize realistic and diverse traffic light sequences. Extensive experiments show that the proposed TL-GAN renders remarkable improvement over the baseline without using the generated data, leading to the state-of-the-art performance in comparison with the competing algorithms that are used for general image synthesis and data imbalance tackling.