论文标题
在热弹性屈曲下的拓扑优化
Topology optimization under thermo-elastic buckling
论文作者
论文摘要
本文的重点是对受热诱导屈曲的连续结构的拓扑优化。解决此类问题的流行策略包括具有惩罚的固体各向同性材料(SIMP)和材料特性的合理近似(RAMP)。两种方法都依赖于材料参数化,有时可以在伪密度较低的区域中表现出伪屈曲模式。在这里,我们考虑了一种依赖拓扑灵敏度概念的级别方法。热弹性屈曲的拓扑灵敏度分析是通过直接和伴随配方进行的。然后,提出了增强的拉格朗日公式,以利用这些敏感性来解决弯曲的约束问题。 3D中的数值实验说明了所提出方法的鲁棒性和效率。
The focus of this paper is on topology optimization of continuum structures subject to thermally induced buckling. Popular strategies for solving such problems include Solid Isotropic Material with Penalization (SIMP) and Rational Approximation of Material Properties (RAMP). Both methods rely on material parameterization, and can sometimes exhibit pseudo buckling modes in regions with low pseudo-densities. Here we consider a level-set approach that relies on the concept of topological sensitivity. Topological sensitivity analysis for thermo-elastic buckling is carried out via direct and adjoint formulations. Then, an augmented Lagrangian formulation is presented that exploits these sensitivities to solve a buckling constrained problem. Numerical experiments in 3D illustrate the robustness and efficiency of the proposed method.