论文标题

基于流量的量子蒙特卡洛的数值和几何方面

Numerical and geometrical aspects of flow-based variational quantum Monte Carlo

论文作者

Stokes, James, Chen, Brian, Veerapaneni, Shravan

论文摘要

本文旨在总结使用基于流动的变异量子蒙特卡洛技术模拟连续变量量子系统的最新和持续的努力,以教学目的集中在现场幅度(Quadrature)的玻色子的范例上。特别强调的是变异现实和假想的时间演化问题,仔细审查了时间依赖性变分原理的随机估计及其与信息几何形状的关系。提供了一些实用说明来指导实施Pytorch代码。对机器学习和量子信息科学感兴趣的研究人员可以访问该评论。

This article aims to summarize recent and ongoing efforts to simulate continuous-variable quantum systems using flow-based variational quantum Monte Carlo techniques, focusing for pedagogical purposes on the example of bosons in the field amplitude (quadrature) basis. Particular emphasis is placed on the variational real- and imaginary-time evolution problems, carefully reviewing the stochastic estimation of the time-dependent variational principles and their relationship with information geometry. Some practical instructions are provided to guide the implementation of a PyTorch code. The review is intended to be accessible to researchers interested in machine learning and quantum information science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源