论文标题
渐近几何和三角洲
Asymptotic geometry and delta-points
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study Daugavet- and $Δ$-points in Banach spaces. A norm one element $x$ is a Daugavet-point (respectively a $Δ$-point) if in every slice of the unit ball (respectively in every slice of the unit ball containing $x$) you can find another element of distance as close to $2$ from $x$ as desired. In this paper we look for criteria and properties ensuring that a norm one element is not a Daugavet- or $Δ$-point. We show that asymptotically uniformly smooth spaces and reflexive asymptotically uniformly convex spaces do not contain $Δ$-points. We also show that the same conclusion holds true for the James tree space as well as for its predual. Finally we prove that there exists a superreflexive Banach space with a Daugavet- or $Δ$-point provided there exists such a space satisfying a weaker condition.