论文标题

在节点动力学上,分布式有限和约束优化的优化为非线性

Distributed Finite-Sum Constrained Optimization subject to Nonlinearity on the Node Dynamics

论文作者

Doostmohammadian, Mohammadreza, Vrakopoulou, Maria, Aghasi, Alireza, Charalambous, Themistoklis

论文摘要

通过网络和并行数据处理的最新开发的激励,我们考虑了一种分布式和局部的有限-AM(或固定-SUM)分配技术,以解决对多代理网络(MANS)的资源约束凸优化问题。这样的网络包括(智能)代理,代表能够进行沟通,处理和决策的智能实体。特别是,我们考虑的问题在其通信和驱动功能(称为节点动力学)方面受到代理动力学的实际非线性约束,例如,移动机器人网络受到执行器饱和和量化通信的网络。所考虑的分布式总和优化解决方案进一步促进了添加有目的的非线性约束,例如基于符号的非线性,以在预定义的时间或健壮的情况下达到收敛,从而在有缺陷的环境下进行冲动的噪声和干扰。此外,在代理商之间的最小网络连接要求下可以实现融合;因此,该解决方案适用于动态网络,该网络由于代理的移动性和有限的范围而到达通道的到来。本文讨论了如何通过分布式设置(通过网络)来解决不同应用程序的优化问题(例如,资源协作分配)的各种非线性约束。

Motivated by recent development in networking and parallel data-processing, we consider a distributed and localized finite-sum (or fixed-sum) allocation technique to solve resource-constrained convex optimization problems over multi-agent networks (MANs). Such networks include (smart) agents representing an intelligent entity capable of communication, processing, and decision-making. In particular, we consider problems subject to practical nonlinear constraints on the dynamics of the agents in terms of their communications and actuation capabilities (referred to as the node dynamics), e.g., networks of mobile robots subject to actuator saturation and quantized communication. The considered distributed sum-preserving optimization solution further enables adding purposeful nonlinear constraints, for example, sign-based nonlinearities, to reach convergence in predefined-time or robust to impulsive noise and disturbances in faulty environments. Moreover, convergence can be achieved under minimal network connectivity requirements among the agents; thus, the solution is applicable over dynamic networks where the channels come and go due to the agent's mobility and limited range. This paper discusses how various nonlinearity constraints on the optimization problem (e.g., collaborative allocation of resources) can be addressed for different applications via a distributed setup (over a network).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源