论文标题
捆扎GERBE模块和分数分类空间上的分数结构
Fractional structures on bundle gerbe modules and fractional classifying spaces
论文作者
论文摘要
我们研究了扭曲的Chern类别的扭转束gerbe模块的同质性方面。使用沙利文的理性同义理论,我们在分类空间的层面上实现了扭曲的Chern类。该构建提出了一个概念,我们称之为分数U结构,是一种通用框架,可以从分类空间的角度研究扭曲的Chern torsion Bundle Gerbe模块。基于此,我们介绍并研究了与普通矢量捆绑包上较高结构的扭转束GERBE模块有关的较高分数结构。
We study the homotopy aspects of the twisted Chern classes of torsion bundle gerbe modules. Using Sullivan's rational homotopy theory, we realize the twisted Chern classes at the level of classifying spaces. The construction suggests a notion, which we call fractional U-structure serving as a universal framework to study the twisted Chern classes of torsion bundle gerbe modules from the perspective of classifying spaces. Based on this, we introduce and study higher fractional structures on torsion bundle gerbe modules parallel to the higher structures on ordinary vector bundles.