论文标题
现实世界图像超级分辨率的高效和降解自适应网络
Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution
论文作者
论文摘要
高效有效的现实世界图像超分辨率(REAL-ISR)是一项艰巨的任务,因为实际应用中现实世界图像的复杂降低以及有限的计算资源。关于实施ISR的最新研究通过对图像降解空间进行建模,取得了重大进展。但是,这些方法在很大程度上取决于重型骨干网络,并且不灵活地处理不同降解水平的图像。在本文中,我们提出了一个有效有效的降解自适应超分辨率(DASR)网络,该网络的参数是通过估计每个输入图像的降解来自适应指定的。具体而言,采用微小的回归网络来预测输入图像的降解参数,而具有相同拓扑的几位卷积专家则可以共同优化以通过非线性专家混合物来指定网络参数。多个专家的联合优化和退化自适应管道显着扩展了模型能力以处理各种级别的降解,而推断仍然有效,因为只有一个适应性指定的网络用于超级解决输入图像。我们的广泛实验表明,所提出的DASR不仅要比现有的方法在处理具有不同降解水平的现实世界图像方面的效率更高,而且还有效地易于部署。代码,模型和数据集可在https://github.com/csjliang/dasr上找到。
Efficient and effective real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images and the limited computation resources in practical applications. Recent research on Real-ISR has achieved significant progress by modeling the image degradation space; however, these methods largely rely on heavy backbone networks and they are inflexible to handle images of different degradation levels. In this paper, we propose an efficient and effective degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image. Specifically, a tiny regression network is employed to predict the degradation parameters of the input image, while several convolutional experts with the same topology are jointly optimized to specify the network parameters via a non-linear mixture of experts. The joint optimization of multiple experts and the degradation-adaptive pipeline significantly extend the model capacity to handle degradations of various levels, while the inference remains efficient since only one adaptively specified network is used for super-resolving the input image. Our extensive experiments demonstrate that the proposed DASR is not only much more effective than existing methods on handling real-world images with different degradation levels but also efficient for easy deployment. Codes, models and datasets are available at https://github.com/csjliang/DASR.