论文标题
使用人工神经网络发现生理神经元模型的Hodgkin-Huxley型模型的动力学特征
Discovering dynamical features of Hodgkin-Huxley-type model of physiological neuron using artificial neural network
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider Hodgkin-Huxley-type model that is a stiff ODE system with two fast and one slow variables. For the parameter ranges under consideration the original version of the model has unstable fixed point and the oscillating attractor that demonstrates bifurcation from bursting to spiking dynamics. Also a modified version is considered where the bistability occurs such that an area in the parameter space appears where the fixed point becomes stable and coexists with the bursting attractor. For these two systems we create artificial neural networks that are able to reproduce their dynamics. The created networks operate as recurrent maps and are trained on trajectory cuts sampled at random parameter values within a certain range. Although the networks are trained only on oscillatory trajectory cuts, it also discover the fixed point of the considered systems. The position and even the eigenvalues coincide very well with the fixed point of the initial ODEs. For the bistable model it means that the network being trained only on one brunch of the solutions recovers another brunch without seeing it during the training. These results, as we see it, are able to trigger the development of new approaches to complex dynamics reconstruction and discovering. From the practical point of view reproducing dynamics with the neural network can be considered as a sort of alternative method of numerical modeling intended for use with contemporary parallel hard- and software.