论文标题

部分可观测时空混沌系统的无模型预测

On the Galois-Gauss sums of weakly ramified characters

论文作者

Kuang, Y.

论文摘要

Bley,Burns和Hahn使用了相对代数$ K $ - 理论方法来建立(第二个Adams-anderted)的(第二个Adams-operator扭曲)的Galois-Gauss和弱分支的Artin字符的总和和有限程度,奇数,奇数,奇数,GALOIS扩展的数字字段的平方根的Galois-Gauss总和。我们通过使用ULLOM的众所周知的结果的精制版本,在奇数质量范围的扩展中为这种猜想提供了具体的新证据。

Bley, Burns and Hahn used relative algebraic $K$-theory methods to formulate a precise conjectural link between the (second Adams-operator twisted) Galois-Gauss sums of weakly ramified Artin characters and the square root of the inverse different of finite, odd degree, Galois extensions of number fields. We provide concrete new evidence for this conjecture in the setting of extensions of odd prime-power degree by using a refined version of a well-known result of Ullom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源