论文标题
部分可观测时空混沌系统的无模型预测
Non-extensive thermodynamics of the radiation in heterogeneous thermal plasmas
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Thermodynamic characteristics of the radiation of condensed combustion products presented in the form of agglomerates of metal-oxide nanoparticles demonstrate deviations from the classical Planck's law. We propose to interpret these deviations in terms of the non-additive entropy of the photon system interacting with the heterogeneous combustion products, which makes it possible to use the non-extensive Tsallis thermodynamics for their description. It is assumed that the non-additive character of the radiation entropy in heterogeneous plasma can be explained by the influence of long-range interactions and non-equilibrium physicochemical processes. An expression is obtained for the energy-dependent distribution of the photon density, based on the phenomenological parameter of non-extensiveness $q$ which, in the first approximation, does not depend on the energy. In this case, the "non-extensive" Planck's law can be reduced to the "usual" Planck distribution by introducing the "effective temperature" that exceeds the real temperature. Numerical modelling has shown that the spectral density of photons, the position and magnitude of its maximum depend on the value of the parameter $q$, which can be used for its experimental determination and revelation of its physical nature and origin.