论文标题

从干预到域运输:优化建议的新颖观点

From Intervention to Domain Transportation: A Novel Perspective to Optimize Recommendation

论文作者

Xu, Da, Ye, Yuting, Ruan, Chuanwei

论文摘要

近年来,推荐的介入性质引起了人们的关注。它特别激发了研究人员制定学习和评估建议作为因果推断和数据缺失 - 非随机问题的问题。但是,很少有人会认真对待违反重叠的关键假设的结果,我们证明这可能会大大威胁到结果的有效性和解释。我们发现当前对信息检索(IR)系统的理解中缺少一个关键部分:作为干预措施,建议不仅会影响已经观察到的数据,而且还会干扰目标域(分布)。然后,我们将优化的建议重新提高,以找到一种干预措施,该干预措施最能将其从观察到的域学习到其干预域。为此,我们使用域运输来表征推荐的学习干预机制。我们设计了一个有原则的运输构成风险最小化目标,并将其转换为两个玩家的Minimax游戏。我们证明了拟议目标的一致性,概括和过度风险范围,并详细说明了它们与当前结果的比较。最后,我们进行了广泛的真实数据和半合成实验,以证明我们的方法的优势,并使用现实世界中的IR系统启动在线测试。

The interventional nature of recommendation has attracted increasing attention in recent years. It particularly motivates researchers to formulate learning and evaluating recommendation as causal inference and data missing-not-at-random problems. However, few take seriously the consequence of violating the critical assumption of overlapping, which we prove can significantly threaten the validity and interpretation of the outcome. We find a critical piece missing in the current understanding of information retrieval (IR) systems: as interventions, recommendation not only affects the already observed data, but it also interferes with the target domain (distribution) of interest. We then rephrase optimizing recommendation as finding an intervention that best transports the patterns it learns from the observed domain to its intervention domain. Towards this end, we use domain transportation to characterize the learning-intervention mechanism of recommendation. We design a principled transportation-constraint risk minimization objective and convert it to a two-player minimax game. We prove the consistency, generalization, and excessive risk bounds for the proposed objective, and elaborate how they compare to the current results. Finally, we carry out extensive real-data and semi-synthetic experiments to demonstrate the advantage of our approach, and launch online testing with a real-world IR system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源