论文标题

通过运动不确定性扩散的随机轨迹预测

Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion

论文作者

Gu, Tianpei, Chen, Guangyi, Li, Junlong, Lin, Chunze, Rao, Yongming, Zhou, Jie, Lu, Jiwen

论文摘要

人类行为具有不确定性的性质,这需要行人轨迹预测系统来对未来运动状态的多模式进行建模。与通常使用潜在变量代表多模式的现有随机轨迹预测方法不同,我们明确模拟了从不确定到确定的人类运动变化的过程。在本文中,我们提出了一个新的框架,以制定轨迹预测任务为运动不确定性扩散(中)的反向过程,在该过程中,我们逐渐从所有可步行区域逐渐丢弃不确定性,直到达到所需的轨迹。通过观察到的轨迹调节的参数化马尔可夫链可以学习此过程。我们可以调整链的长度,以控制不确定性的程度,并平衡预测的多样性和决定性。具体而言,我们将历史行为信息和社交互动编码为状态嵌入,并设计基于变压器的扩散模型以捕获轨迹的时间依赖性。关于人类轨迹预测基准在内的广泛实验包括斯坦福无人机和ETH/UCY数据集,证明了我们方法的优势。代码可在https://github.com/gutianpei/mid上找到。

Human behavior has the nature of indeterminacy, which requires the pedestrian trajectory prediction system to model the multi-modality of future motion states. Unlike existing stochastic trajectory prediction methods which usually use a latent variable to represent multi-modality, we explicitly simulate the process of human motion variation from indeterminate to determinate. In this paper, we present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID), in which we progressively discard indeterminacy from all the walkable areas until reaching the desired trajectory. This process is learned with a parameterized Markov chain conditioned by the observed trajectories. We can adjust the length of the chain to control the degree of indeterminacy and balance the diversity and determinacy of the predictions. Specifically, we encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories. Extensive experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method. Code is available at https://github.com/gutianpei/MID.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源