论文标题
事件和帧的密集连续时间流量
Dense Continuous-Time Optical Flow from Events and Frames
论文作者
论文摘要
我们提出了一种从事件数据估算密集连续的光流的方法。传统密集的光流方法计算两个图像之间的像素位移。由于缺少信息,这些方法无法在两个图像之间的盲时间中恢复像素轨迹。在这项工作中,我们表明可以使用事件摄像头的事件来计算每像素,连续的光流。事件提供有关像素空间中运动的时间细粒信息,因为它们的异步性和微秒响应时间。我们利用这些好处来通过参数化的Bézier曲线在连续时间密集地预测像素轨迹。为了实现这一目标,我们构建了一个具有强大归纳偏见的神经网络,以实现此任务:首先,我们使用事件数据及时构建了多个顺序相关量。其次,我们使用Bézier曲线在沿轨迹的多个时间戳上为这些相关量进行索引。第三,我们使用检索到的相关性迭代更新Bézier曲线表示。我们的方法可以选择包括图像对,以进一步提高性能。据我们所知,我们的模型是可以从事件数据中回归密集的像素轨迹的第一种方法。为了训练和评估我们的模型,我们引入了一个合成数据集(Multiflow),该数据集(Multiflow)具有每个像素的移动对象和地面真实轨迹。我们的定量实验不仅表明我们的方法在连续的时间内成功预测了像素轨迹,而且在传统的两视频像素位移中具有竞争力,在Multiflow和dsec-flow上。开源代码和数据集向公众发布。
We present a method for estimating dense continuous-time optical flow from event data. Traditional dense optical flow methods compute the pixel displacement between two images. Due to missing information, these approaches cannot recover the pixel trajectories in the blind time between two images. In this work, we show that it is possible to compute per-pixel, continuous-time optical flow using events from an event camera. Events provide temporally fine-grained information about movement in pixel space due to their asynchronous nature and microsecond response time. We leverage these benefits to predict pixel trajectories densely in continuous time via parameterized Bézier curves. To achieve this, we build a neural network with strong inductive biases for this task: First, we build multiple sequential correlation volumes in time using event data. Second, we use Bézier curves to index these correlation volumes at multiple timestamps along the trajectory. Third, we use the retrieved correlation to update the Bézier curve representations iteratively. Our method can optionally include image pairs to boost performance further. To the best of our knowledge, our model is the first method that can regress dense pixel trajectories from event data. To train and evaluate our model, we introduce a synthetic dataset (MultiFlow) that features moving objects and ground truth trajectories for every pixel. Our quantitative experiments not only suggest that our method successfully predicts pixel trajectories in continuous time but also that it is competitive in the traditional two-view pixel displacement metric on MultiFlow and DSEC-Flow. Open source code and datasets are released to the public.