论文标题
类别级对象姿势估计的视觉导航透视图
A Visual Navigation Perspective for Category-Level Object Pose Estimation
论文作者
论文摘要
本文研究基于单眼图像的类别级对象构成估计。姿势感知的生成模型的最新进展为解决这一具有挑战性的任务的方式铺平了道路。这个想法是依次更新生成模型的一组潜在变量,例如姿势,形状和外观,直到生成的图像最能与观察结果一致为止。但是,收敛和效率是该推理程序的两个挑战。在本文中,我们从视觉导航的角度更深入地研究了分析的推论,并研究了该特定任务的良好导航策略。我们通过在收敛,鲁棒性和效率方面进行彻底比较,评估三种不同的策略,包括梯度下降,增强学习和模仿学习。此外,我们表明一种简单的混合方法会导致有效而有效的解决方案。我们进一步将这些策略与最先进的方法进行了比较,并在利用现成的姿势感知的生成模型的合成和现实数据集上展示了卓越的性能。
This paper studies category-level object pose estimation based on a single monocular image. Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis. The idea is to sequentially update a set of latent variables, e.g., pose, shape, and appearance, of the generative model until the generated image best agrees with the observation. However, convergence and efficiency are two challenges of this inference procedure. In this paper, we take a deeper look at the inference of analysis-by-synthesis from the perspective of visual navigation, and investigate what is a good navigation policy for this specific task. We evaluate three different strategies, including gradient descent, reinforcement learning and imitation learning, via thorough comparisons in terms of convergence, robustness and efficiency. Moreover, we show that a simple hybrid approach leads to an effective and efficient solution. We further compare these strategies to state-of-the-art methods, and demonstrate superior performance on synthetic and real-world datasets leveraging off-the-shelf pose-aware generative models.