论文标题
非参数有条件的本地独立测试
Nonparametric Conditional Local Independence Testing
论文作者
论文摘要
有条件的局部独立性是连续时间随机过程之间的不对称独立关系。它描述了一个过程的演变是否直接受到其他过程的历史的影响,对于描述和学习过程之间的因果关系很重要。我们开发了一个无模型的框架来测试以下假设:计数过程在局部与另一个过程无关。为此,我们引入了一个称为局部协方差度量(LCM)的新功能参数,该参数量化了与假设的偏差。遵循双机器学习的原理,我们提出了使用非参数估计器和样品分裂或交叉拟合的LCM的估计量和假设的检验。我们将此测试称为(交叉)本地协方差测试((x)-LCT),并且我们表明,如果非参数估计器与适度的速率一致,则可以统一地控制其水平和功率。我们通过一个基于边缘化的COX模型的示例来说明该理论,该模型具有时间依赖性的协变量,我们在模拟中表明,当双重机器学习与交叉拟合结合使用时,该测试就可以很好地工作,而无需限制性参数假设。
Conditional local independence is an asymmetric independence relation among continuous time stochastic processes. It describes whether the evolution of one process is directly influenced by another process given the histories of additional processes, and it is important for the description and learning of causal relations among processes. We develop a model-free framework for testing the hypothesis that a counting process is conditionally locally independent of another process. To this end, we introduce a new functional parameter called the Local Covariance Measure (LCM), which quantifies deviations from the hypothesis. Following the principles of double machine learning, we propose an estimator of the LCM and a test of the hypothesis using nonparametric estimators and sample splitting or cross-fitting. We call this test the (cross-fitted) Local Covariance Test ((X)-LCT), and we show that its level and power can be controlled uniformly, provided that the nonparametric estimators are consistent with modest rates. We illustrate the theory by an example based on a marginalized Cox model with time-dependent covariates, and we show in simulations that when double machine learning is used in combination with cross-fitting, then the test works well without restrictive parametric assumptions.