论文标题

在lelong数量上

On Lelong Numbers of Generalized Monge-Ampère Products

论文作者

Sera, Martin

论文摘要

我们考虑了Quasiplurisubharmonic功能的广义(混合)Monge-ampère产品(具有和不具有分析性奇异性),并在由M. Andersson,E。Wulcan,Z.Błocki,R.Lärkäng,R.Lärkäng,H。Raufi,H。Raufi,J.Ruppenthal和作者的几篇文章中介绍和研究。我们继续这些研究,并通过适当的全态浸入对此类产品的lelong数量进行估计。此外,我们将这些估计值应用于伪芬德载体束的Chern和Segre电流。在其他推论中,我们获得了X. Wu最近结果的以下概括。如果kähler歧管上的伪式矢量束$ e $的非NEF座位包含在$ k $ sodemensional的可数联合中,并且如果$ e $ $ e $的$ k $ - $ k $ - $ e $的$ k $ - 是trivial,则是trivial,则$ e $ nef是nef。

We consider generalized (mixed) Monge-Ampère products of quasiplurisubharmonic functions (with and without analytic singularities) as they were introduced and studied in several articles written by subsets of M. Andersson, E. Wulcan, Z. Błocki, R. Lärkäng, H. Raufi, J. Ruppenthal, and the author. We continue these studies and present estimates for the Lelong numbers of pushforwards of such products by proper holomorphic submersions. Furthermore, we apply these estimates to Chern and Segre currents of pseudoeffective vector bundles. Among other corollaries, we obtain the following generalization of a recent result by X. Wu. If the non-nef locus of a pseudoeffective vector bundle $E$ on a Kähler manifold is contained in a countable union of $k$-codimensional analytic sets, and if the $k$-power of the first Chern class of $E$ is trivial, then $E$ is nef.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源