论文标题
对受约束问题的自动设计的多目标算法的组件分析
Component-wise Analysis of Automatically Designed Multiobjective Algorithms on Constrained Problems
论文作者
论文摘要
多目标算法的性能随问题而变化,因此很难开发新算法或将现有的算法应用于新问题。为了简化新的多目标算法的开发和应用,他们对组件零件的自动设计产生了越来越多的兴趣。这些自动设计的元启发式学可以胜过其人类开发的对应物。但是,仍然不确定什么是导致其性能提高的最有影响力的组成部分。这项研究介绍了一种新方法,以研究自动设计算法的最终配置的影响。我们将此方法应用于基于IRACE软件包设计的分解(MOEA/D)的表现良好的多目标进化算法,该算法是在9个受约束问题上设计的。然后,我们将算法组件的搜索轨迹网络(STN),人口多样性和超vOlume的影响对比。我们的结果表明,最有影响力的组件是重新启动和更新策略,性能的增长和更截然不同的度量值。同样,它们的相对影响取决于问题的难度:在MOEA/D表现更好的问题中,不使用重新启动策略更具影响力;尽管更新策略在MOEA/D执行最差的问题中更具影响力。
The performance of multiobjective algorithms varies across problems, making it hard to develop new algorithms or apply existing ones to new problems. To simplify the development and application of new multiobjective algorithms, there has been an increasing interest in their automatic design from component parts. These automatically designed metaheuristics can outperform their human-developed counterparts. However, it is still uncertain what are the most influential components leading to their performance improvement. This study introduces a new methodology to investigate the effects of the final configuration of an automatically designed algorithm. We apply this methodology to a well-performing Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) designed by the irace package on nine constrained problems. We then contrast the impact of the algorithm components in terms of their Search Trajectory Networks (STNs), the diversity of the population, and the hypervolume. Our results indicate that the most influential components were the restart and update strategies, with higher increments in performance and more distinct metric values. Also, their relative influence depends on the problem difficulty: not using the restart strategy was more influential in problems where MOEA/D performs better; while the update strategy was more influential in problems where MOEA/D performs the worst.