论文标题
关于Neumann问题解决方案的可移动奇异性,涉及可变指数的椭圆方程
On removable singularities for solutions of Neumann problem for elliptic equations involving variable exponent
论文作者
论文摘要
我们研究了具有可变指数的椭圆方程的Neumann问题边界中奇异集的可移动性。我们考虑了奇异集很紧凑的情况,并给出了足够的条件,以使这种奇异性用于可变指数Sobolev空间中的方程式。
We study the removability of a singular set in the boundary of Neumann problem for elliptic equations with variable exponent. We consider the case where the singular set is compact, and give sufficient conditions for removability of this singularity for equations in the variable exponent Sobolev space.