论文标题

音调语言的自动歌曲翻译

Automatic Song Translation for Tonal Languages

论文作者

Guo, Fenfei, Zhang, Chen, Zhang, Zhirui, He, Qixin, Zhang, Kejun, Xie, Jun, Boyd-Graber, Jordan

论文摘要

本文为音调语言开发了自动歌曲翻译(AST),并解决了单词的音调与歌曲的旋律相结合的独特挑战,这些挑战除了传达了原始含义。我们提出了有效AST的三个标准 - 保留含义,可唱性和清晰度 - 以及针对这些标准的设计指标。我们为英语歌曲翻译开发了一个新的基准测试,并开发了无监督的AST系统,自动歌曲翻译(Gagast)的指导对准(Gagast),该系统将预训练与三个解码约束结合在一起。自动评估和人类评估都表明,Gagast成功平衡了语义和单词。

This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words' tones with melody of a song in addition to conveying the original meaning. We propose three criteria for effective AST -- preserving meaning, singability and intelligibility -- and design metrics for these criteria. We develop a new benchmark for English--Mandarin song translation and develop an unsupervised AST system, Guided AliGnment for Automatic Song Translation (GagaST), which combines pre-training with three decoding constraints. Both automatic and human evaluations show GagaST successfully balances semantics and singability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源