论文标题
实验室地震预测的深度学习和对断层区域压力的自我重新预测
Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress
论文作者
论文摘要
地震的预测和预测有很长的时间,在某些情况下,最近的工作重新激发了人们的兴趣,这是基于预警的进步,诱发地震性的危害评估以及对实验室地震的成功预测。在实验室中,摩擦滑移事件为地震和地震周期提供了类似物。 Labquakes是机器学习(ML)的理想目标,因为它们可以在受控条件下以长序列生产。最近的作品表明,ML可以使用断层区的声学排放来预测实验室的几个方面。在这里,我们概括了这些结果,并探索了Labquake预测和自动回归(AR)预测的深度学习(DL)方法。 DL改善了现有的Labquake预测方法。 AR方法允许通过迭代预测在未来的视野中进行预测。我们证明,基于长期任期内存(LSTM)和卷积神经网络的DL模型可以预测在几种条件下的实验室,并且可以以忠诚度预测断层区应力,这证实声能是断层区应力的指纹。我们还预测了实验室的失败开始(TTSF)和失败结束(TTEF)的时间。有趣的是,在所有地震循环中都可以成功预测TTEF,而TTSF的预测随preseismisic断层蠕变的数量而变化。我们报告使用三个序列建模框架:LSTM,时间卷积网络和变压器网络的AR方法来预测故障应力的演变。 AR预测与现有的预测模型不同,该模型仅在特定时间预测目标变量。超出单个地震周期的预测结果有限,但令人鼓舞。我们的ML/DL模型优于最先进的模型,我们的自回归模型代表了一个新颖的框架,可以增强当前的地震预测方法。
Earthquake forecasting and prediction have long and in some cases sordid histories but recent work has rekindled interest based on advances in early warning, hazard assessment for induced seismicity and successful prediction of laboratory earthquakes. In the lab, frictional stick-slip events provide an analog for earthquakes and the seismic cycle. Labquakes are ideal targets for machine learning (ML) because they can be produced in long sequences under controlled conditions. Recent works show that ML can predict several aspects of labquakes using fault zone acoustic emissions. Here, we generalize these results and explore deep learning (DL) methods for labquake prediction and autoregressive (AR) forecasting. DL improves existing ML methods of labquake prediction. AR methods allow forecasting at future horizons via iterative predictions. We demonstrate that DL models based on Long-Short Term Memory (LSTM) and Convolution Neural Networks predict labquakes under several conditions, and that fault zone stress can be predicted with fidelity, confirming that acoustic energy is a fingerprint of fault zone stress. We predict also time to start of failure (TTsF) and time to the end of Failure (TTeF) for labquakes. Interestingly, TTeF is successfully predicted in all seismic cycles, while the TTsF prediction varies with the amount of preseismic fault creep. We report AR methods to forecast the evolution of fault stress using three sequence modeling frameworks: LSTM, Temporal Convolution Network and Transformer Network. AR forecasting is distinct from existing predictive models, which predict only a target variable at a specific time. The results for forecasting beyond a single seismic cycle are limited but encouraging. Our ML/DL models outperform the state-of-the-art and our autoregressive model represents a novel framework that could enhance current methods of earthquake forecasting.