论文标题
实用的盲图图像通过swin-conv-unet和数据综合
Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis
论文作者
论文摘要
尽管近年来见证了利用深层神经网络来解决图像降级的急剧上升,但现有方法主要依赖于简单的噪声假设,例如加性白色高斯噪声(AWGN),JPEG压缩噪声和相机传感器噪声,以及用于真实图像的总通用盲型方法。在本文中,我们尝试从网络体系结构设计和培训数据综合的角度来解决这个问题。具体而言,对于网络体系结构设计,我们提出了一个SWIN-CONV块,以结合SWIN Transformer块的残留卷积层和非本地建模能力的局部建模能力,然后将其作为主要的构建块插入广泛使用的图像到图像到图像到图像到图像到图像转换式UNET体系结构。对于训练数据综合,我们设计了一个实用的噪声降解模型,该模型考虑了不同种类的噪声(包括高斯,泊松,斑点,Speckle,JPEG压缩和加工的摄像机传感器噪声)和调整大小,并且还涉及随机的洗牌策略和双重退化策略。关于AGWN去除和真实图像的广泛实验表明,新的网络体系结构设计实现了最新的性能和新的退化模型,可以有助于显着提高可实用性。我们认为,我们的工作可以为当前的剥离研究提供有用的见解。
While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising, existing methods mostly rely on simple noise assumptions, such as additive white Gaussian noise (AWGN), JPEG compression noise and camera sensor noise, and a general-purpose blind denoising method for real images remains unsolved. In this paper, we attempt to solve this problem from the perspective of network architecture design and training data synthesis. Specifically, for the network architecture design, we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block, and then plug it as the main building block into the widely-used image-to-image translation UNet architecture. For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise (including Gaussian, Poisson, speckle, JPEG compression, and processed camera sensor noises) and resizing, and also involves a random shuffle strategy and a double degradation strategy. Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability. We believe our work can provide useful insights into current denoising research.