论文标题
在扩展的准二维二聚体晶格中,子系统对称保护边缘状态的拓扑特性
Topological properties of subsystem-symmetry-protected edge states in an extended quasi-one-dimensional dimerized lattice
论文作者
论文摘要
从理论上讲,我们研究了由多腿$(L)$以及多sublattices $(r)$的二聚体二维(1D)晶格的拓扑特性。该系统具有主要和子公司交换对称性。在后者的基础上,该系统可以分为$ L $ 1D子系统,每个系统都对应于具有$ R $ Sublattices和现场电位的广义$ SSH_R $模型。在所有子系统中都没有手性对称性,除非主要交换对称性的轴重合中央链上。我们发现该系统可以持有零和有限的能源拓扑边缘状态。零能量边缘状态的存在需要腿部数量和转子数之间有一定的关系。因此,由子系统对称性保护的不同拓扑阶段,包括主间隙中的零能量边缘状态,没有零能的边缘状态和批量状态中的零能量边缘状态。尽管该系统的分类对称性属于$ bdi $,但每个子系统都属于$ ai $或$ bdi $对称类。
We investigate theoretically the topological properties of dimerized quasi-one-dimensional (1D) lattice comprising of multi legs $(L)$ as well as multi sublattices $(R)$. The system has main and subsidiary exchange symmetries. In the basis of latter one, the system can be divided into $L$ 1D subsystems each of which corresponds to a generalized $SSH_R$ model having $R$ sublattices and on-site potentials. Chiral symmetry is absent in all subsystems except when the axis of main exchange symmetry coincides on the central chain. We find that the system may host zero- and finite-energy topological edge states. The existence of zero-energy edge state requires a certain relation between the number of legs and sublattices. As such, different topological phases, protected by subsystem symmetry, including zero-energy edge states in the main gap, no zero-energy edge states, and zero-energy edge states in the bulk states are characterized. Despite the classification symmetry of the system belongs to $BDI$ but each subsystem falls in either $AI$ or $BDI$ symmetry class.