论文标题

分数热型操作员的定量唯一性

Quantitative uniqueness for fractional heat type operators

论文作者

Arya, Vedansh, Banerjee, Agnid

论文摘要

在本文中,我们通过新的卡尔曼估计值在[1/2,1)$ in [1/2,1)$ in $(\ partial_t -δ)^s u = vu $的解决方案上获得了定量界限。我们的主要结果定理1.1和定理1.3可以被认为是由于rüland引起的时间无关的相应定量唯一性的抛物线概括,并且也可以被视为由于Zhu的局部抛物线方程解决方案而引起的相似结果的非局部概括。

In this paper we obtain quantitative bounds on the maximal order of vanishing for solutions to $(\partial_t - Δ)^s u =Vu$ for $s\in [1/2, 1)$ via new Carleman estimates. Our main result Theorem 1.1 and Theorem 1.3 can be thought of as a parabolic generalization of the corresponding quantitative uniqueness result in the time independent case due to Rüland and it can also be regarded as a nonlocal generalization of a similar result due to Zhu for solutions to local parabolic equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源