论文标题

具有保守的相位方法的两相不可压缩的Navier-Stokes方程的离散外部计算离散化

Discrete exterior calculus discretization of two-phase incompressible Navier-Stokes equations with a conservative phase field method

论文作者

Wang, Minmiao, Jagad, Pankaj, Hirani, Anil N., Samtaney, Ravi

论文摘要

我们为不可压缩的两相流提供了基于离散的外部演算(DEC)的离散化方案。我们对物理兼容的单相流量的外部演算离散化扩展以模拟不混溶的两相流,并在界面上的密度和粘度等流体特性中不连续变化。首先将两阶段不可压缩的Navier-Stokes方程和接口捕获的保守相位场方程首先转换为外部演算框架。这些平滑方程的离散计数部分是通过用离散的差分形式和离散的外部操作员替换来获得的。我们证明了DEC框架中的一阶欧拉前进和预测 - 校正时间积分方案的方法的界限。通过正确选择两个自由参数,该方案仍然保持相位场,而无需任何临时质量重新分布。我们针对几个标准测试用例(用于接口捕获)的方案不仅包括扁平域,还包括弯曲域,从而利用DEC操作员独立于坐标系的优势。结果显示出界限,质量保护和收敛性的出色特性。此外,我们证明了该方案在平坦或弯曲表面上各种两相物理现象的模拟中,该方案处理较大密度和粘度比以及表面张力的能力。

We present a discrete exterior calculus (DEC) based discretization scheme for incompressible two-phase flows. Our physically-compatible exterior calculus discretization of single phase flow is extended to simulate immiscible two-phase flows with discontinuous changes in fluid properties such as density and viscosity across the interface. The two-phase incompressible Navier-Stokes equations and conservative phase field equation for interface capturing are first transformed into the exterior calculus framework. The discrete counter part of these smooth equations is obtained by substituting with discrete differential forms and discrete exterior operators. We prove the boundedness of the method for the first order Euler forward and predictor-corrector time integration schemes in the DEC framework. With a proper choice of two free parameters, the scheme remains phase field bounded without the requirement of any ad hoc mass redistribution. We verify the scheme against several standard test cases (for interface capturing) comprising not only the flat domains but also the curved domains, leveraging the advantage that DEC operators are independent of the coordinate system. The results show excellent properties of boundedness, mass conservation and convergence. Moreover, we demonstrate the ability of the scheme towards handling large density and viscosity ratios as well as surface tension in the simulation of various two phase flow physical phenomena on flat or curved surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源