论文标题

Swiftagg+:在安全汇总的联盟学习中实现渐近的最佳沟通负载

SwiftAgg+: Achieving Asymptotically Optimal Communication Loads in Secure Aggregation for Federated Learning

论文作者

Jahani-Nezhad, Tayyebeh, Maddah-Ali, Mohammad Ali, Li, Songze, Caire, Giuseppe

论文摘要

我们提出了Swiftagg+,这是一种针对联合学习系统的新颖的安全聚合协议,其中中央服务器汇总了$ n \ in \ Mathbb {n} $分布式用户的本地型号,每个大小$ l \ in \ Mathbb {n} $中的每个型号都以私密性的方式对本地数据进行了培训。 Swiftagg+可以大大减少通信开销,而无需对安全性进行任何妥协,并在缩小间隙内实现最佳通信负载。具体而言,在最多存在$ d = o(n)$下去用户的情况下,Swiftagg+实现了$(1+ \ Mathcal {o}(\ frac {1} {n} {n}))L $符号的每用户通信负载,而服务器通信的负载和$(1+\ nathcal \ nathcal {of n $} n $ lac {n $ lac)信息理论安全保证,与最多$ t = o(n)$半honest用户的任何子集,他们也可能与好奇的服务器相关。此外,拟议的Swiftagg+允许在通信负载和主动通信链接的数量之间进行灵活的权衡。特别是,对于$ t <n-d $,对于任何$ k \ in \ mathbb {n} $,Swiftagg+可以实现$(1+ \ frac {t} {k} {k})l $符号的服务器通信负载,并且每个用户的通信负载最高$(1+ \ frac \ frac \ frac \ frac {t+d} n $ simption insition insity Is Contrention ins Attive n syment ins contery n syment in Crome connection n syment n syment in Crome nornection。 $ \ frac {n} {2}(k+t+d+1)$。

We propose SwiftAgg+, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N \in \mathbb{N}$ distributed users, each of size $L \in \mathbb{N}$, trained on their local data, in a privacy-preserving manner. SwiftAgg+ can significantly reduce the communication overheads without any compromise on security, and achieve optimal communication loads within diminishing gaps. Specifically, in presence of at most $D=o(N)$ dropout users, SwiftAgg+ achieves a per-user communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols and a server communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols, with a worst-case information-theoretic security guarantee, against any subset of up to $T=o(N)$ semi-honest users who may also collude with the curious server. Moreover, the proposed SwiftAgg+ allows for a flexible trade-off between communication loads and the number of active communication links. In particular, for $T<N-D$ and for any $K\in\mathbb{N}$, SwiftAgg+ can achieve the server communication load of $(1+\frac{T}{K})L$ symbols, and per-user communication load of up to $(1+\frac{T+D}{K})L$ symbols, where the number of pair-wise active connections in the network is $\frac{N}{2}(K+T+D+1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源