论文标题
对数A-Hypermetric系列II
Logarithmic A-hypergeometric series II
论文作者
论文摘要
在[6]之后,我们继续开发出构造对数系列解决方案的扰动方法,以实现常规的A-Hypermetric System。固定A-Hyperemetric系统的假指数,我们考虑了一些线性部分差分运算符的空间,具有恒定系数。比较这些空间,我们通过扰动方法构建了一个串联解决方案的基本系统。此外,我们提供了足够的条件,使给定的假指数成为指数。作为主要结果的重要例子,我们分别为Aomoto-Gel'Fand系统和具有特殊参数向量的Lauricella FC系统提供了串联解决方案的基本系统。
In this paper, following [6], we continue to develop the perturbing method of constructing logarithmic series solutions to a regular A-hypergeometric system. Fixing a fake exponent of an A-hypergeometric system, we consider some spaces of linear partial differential operators with constant coefficients. Comparing these spaces, we construct a fundamental system of series solutions with the given exponent by the perturbing method. In addition, we give a sufficient condition for a given fake exponent to be an exponent. As important examples of the main results, we give fundamental systems of series solutions to Aomoto-Gel'fand systems and to Lauricella's FC systems with special parameter vectors, respectively.