论文标题
LS代数,估值和舒伯特品种
LS Algebras, Valuations and Schubert Varieties
论文作者
论文摘要
在本文中,我们通过Lakshmibai-Seshadri(LS)代数提出了一种代数方法,以在标准单一理论,牛顿 - 科恩科夫的身体和估值之间建立联系。这应用于舒伯特品种,该方法与同一作者使用Seshadri分层的方法兼容(Arxiv:2112.03776),表明LS路径对Schubert品种的网络编码消失的倍数。
In this paper, we propose an algebraic approach via Lakshmibai-Seshadri (LS) algebras to establish a link between standard monomial theories, Newton-Okounkov bodies and valuations. This is applied to Schubert varieties, where this approach is compatible with the one using Seshadri stratifications by the same authors (arXiv:2112.03776), showing that LS paths encode vanishing multiplicities with respect to the web of Schubert varieties.