论文标题

从标签中学习,以实例的一致性

Learning from Label Proportions with Instance-wise Consistency

论文作者

Kobayashi, Ryoma, Mukuta, Yusuke, Harada, Tatsuya

论文摘要

从标签比例学习(LLP)是一种弱监督的学习方法,旨在通过培训数据进行实例分类,这些数据由包含多个实例的袋子和袋子中的类标签比例组成。先前关于多类LLP的研究可以根据学习任务将两类分为两类:综合标签分类和每袋标签标签比例估计。但是,这些方法通常会导致对复杂模型的风险的较高差异估计,或者缺乏统计学习理论论证。为了解决这个问题,我们提出了基于统计学习理论的新学习方法,以针对人均和每袋政策。我们证明所提出的方法以实例方式分别是风险一致的和分类器的一致性,并分析估计误差界限。此外,我们提出了一种启发式近似方法,该方法利用现有方法回归标签比例来降低所提出方法的计算复杂性。通过基准实验,我们证明了所提出方法的有效性。

Learning from Label Proportions (LLP) is a weakly supervised learning method that aims to perform instance classification from training data consisting of pairs of bags containing multiple instances and the class label proportions within the bags. Previous studies on multiclass LLP can be divided into two categories according to the learning task: per-instance label classification and per-bag label proportion estimation. However, these methods often results in high variance estimates of the risk when applied to complex models, or lack statistical learning theory arguments. To address this issue, we propose new learning methods based on statistical learning theory for both per-instance and per-bag policies. We demonstrate that the proposed methods are respectively risk-consistent and classifier-consistent in an instance-wise manner, and analyze the estimation error bounds. Additionally, we present a heuristic approximation method that utilizes an existing method for regressing label proportions to reduce the computational complexity of the proposed methods. Through benchmark experiments, we demonstrated the effectiveness of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源