论文标题
双连续分离群的太阳二元理论
Sun dual theory for bi-continuous semigroups
论文作者
论文摘要
在处理双重半群时,与强烈连续的半群相对应的太阳双空间是一个已知的概念,这通常仅是弱$^*$ - 连续的。在本文中,我们开发了一个对局部凸形拓扑的轻度假设下的双连续半群的相应理论。在这种情况下,我们还讨论了日光反射性和最爱的空间,从而扩展了Van Neerven的经典结果。
The sun dual space corresponding to a strongly continuous semigroup is a known concept when dealing with dual semigroups, which are in general only weak$^*$-continuous. In this paper we develop a corresponding theory for bi-continuous semigroups under mild assumptions on the involved locally convex topologies. We also discuss sun reflexivity and Favard spaces in this context, extending classical results by van Neerven.