论文标题
量子自旋玻璃的光谱形式
Spectral Form Factor of a Quantum Spin Glass
论文作者
论文摘要
人们普遍期望,完全热量化的系统在表现出其能级间距的随机矩阵统计学的意义上是混乱的,而整合系统则表现出泊松统计。在本文中,我们研究了第三类:自旋眼镜。这些系统是部分混乱的,但由于较大的自由能屏障而无法实现完全的热化。我们使用分析路径积分方法研究了规范无限量量子旋转玻璃(量子$ p $ theperical模型)的水平间距统计。我们发现统计数据与独立随机矩阵的直接总和一致,并表明此类矩阵的数量等于不同的亚稳态构型的数量 - 从量子thouless-thouless-thouless-thouless-palmer方程中获得的自旋玻璃“复杂性”的指数。我们还考虑了复杂性本身的统计属性,并确定了对路径积分的一组贡献,这表明了亚稳态配置数量的Poissonian分布。我们的结果表明,水平的间距统计数据可以探测量子自旋玻璃中的千古性破裂,并提供了一种概括具有半经典极限模型之外的自旋玻璃复杂性概念的方法。
It is widely expected that systems which fully thermalize are chaotic in the sense of exhibiting random-matrix statistics of their energy level spacings, whereas integrable systems exhibit Poissonian statistics. In this paper, we investigate a third class: spin glasses. These systems are partially chaotic but do not achieve full thermalization due to large free energy barriers. We examine the level spacing statistics of a canonical infinite-range quantum spin glass, the quantum $p$-spherical model, using an analytic path integral approach. We find statistics consistent with a direct sum of independent random matrices, and show that the number of such matrices is equal to the number of distinct metastable configurations -- the exponential of the spin glass "complexity" as obtained from the quantum Thouless-Anderson-Palmer equations. We also consider the statistical properties of the complexity itself and identify a set of contributions to the path integral which suggest a Poissonian distribution for the number of metastable configurations. Our results show that level spacing statistics can probe the ergodicity-breaking in quantum spin glasses and provide a way to generalize the notion of spin glass complexity beyond models with a semi-classical limit.