论文标题

公平只有公制吗?评估和解决深度度量学习中的子组差距

Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in Deep Metric Learning

论文作者

Dullerud, Natalie, Roth, Karsten, Hamidieh, Kimia, Papernot, Nicolas, Ghassemi, Marzyeh

论文摘要

深度度量学习(DML)可以通过强调表示表示结构来减少监督。在零拍摄等环境中,在改善DML的概括方面已经做出了很多努力,但对其对公平性的影响知之甚少。在本文中,我们是第一个评估对数据不平衡数据训练的最新DML方法的人,并显示这些表示对下游任务时对少数群体绩效的负面影响。在这项工作中,我们首先通过对表示空间的三个属性(类别对齐,阶层内对齐和统一性)的分析来定义DML的公平性,并提出了FindML,FindML,在非平衡DML基准中的公平性来表征表示表示。利用FindML,我们发现DML表示中的偏见传播到常见的下游分类任务。令人惊讶的是,即使在下游任务中训练数据是重新平衡的,这种偏见也会传播。为了解决此问题,我们将部分属性脱离相关(Parade)从敏感属性中脱落特征表示,并减少嵌入式空间和下游指标中亚组之间的性能差距。

Deep metric learning (DML) enables learning with less supervision through its emphasis on the similarity structure of representations. There has been much work on improving generalization of DML in settings like zero-shot retrieval, but little is known about its implications for fairness. In this paper, we are the first to evaluate state-of-the-art DML methods trained on imbalanced data, and to show the negative impact these representations have on minority subgroup performance when used for downstream tasks. In this work, we first define fairness in DML through an analysis of three properties of the representation space -- inter-class alignment, intra-class alignment, and uniformity -- and propose finDML, the fairness in non-balanced DML benchmark to characterize representation fairness. Utilizing finDML, we find bias in DML representations to propagate to common downstream classification tasks. Surprisingly, this bias is propagated even when training data in the downstream task is re-balanced. To address this problem, we present Partial Attribute De-correlation (PARADE) to de-correlate feature representations from sensitive attributes and reduce performance gaps between subgroups in both embedding space and downstream metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源