论文标题

无彩虹$ k $ term arithmetic进程的整数着色

Integer colorings with no rainbow $k$-term arithmetic progression

论文作者

Lin, Hao, Wang, Guanghui, Zhou, Wenling

论文摘要

在本文中,我们研究了关于$ k $ term-Term算术进程的彩虹埃尔德·罗斯柴尔德问题。对于一组正整数$ s \ subseteq [n] $,如果$ s $ s $的颜色为\ emph {rainbow $ k $ -ap-free},如果它包含不含彩虹$ k $ term-term arithmetic进程。令$ g_ {r,k}(s)$表示彩虹$ k $ -ap $ r $ r $ r $ - 颜色的$ s $的数量。对于足够大的$ n $和固定的整数$ r \ ge k \ ge 3 $,我们证明$ g_ {r,k}(s)<g_ {r,k}(r,k}([n])$对于任何适当的子集$ s \ subset [n] $。此外,我们证明$ \ lim_ {n \ to \ infty} g_ {r,k}([n])/(k-1)^n = \ binom {r} {r} {k-1} $。我们的结果在渐近上最好,这意味着,几乎所有彩虹$ k $ ap $ r $ r $ r $ - 颜色的$ [n] $仅使用$ k-1 $ $。

In this paper, we study the rainbow Erdős-Rothschild problem with respect to $k$-term arithmetic progressions. For a set of positive integers $S \subseteq [n]$, an $r$-coloring of $S$ is \emph{rainbow $k$-AP-free} if it contains no rainbow $k$-term arithmetic progression. Let $g_{r,k}(S)$ denote the number of rainbow $k$-AP-free $r$-colorings of $S$. For sufficiently large $n$ and fixed integers $r\ge k\ge 3$, we show that $g_{r,k}(S)<g_{r,k}([n])$ for any proper subset $S\subset [n]$. Further, we prove that $\lim_{n\to \infty}g_{r,k}([n])/(k-1)^n= \binom{r}{k-1}$. Our result is asymptotically best possible and implies that, almost all rainbow $k$-AP-free $r$-colorings of $[n]$ use only $k-1$ colors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源