论文标题

一种机器学习方法,以纠正模拟光环聚类统计中的质量分辨率效应

A Machine Learning Approach to Correct for Mass Resolution Effects in Simulated Halo Clustering Statistics

论文作者

Forero-Sánchez, Daniel, Chuang, Chia-Hsun, Rodríguez-Torres, Sergio, Yepes, Gustavo, Gottlöber, Stefan, Zhao, Cheng

论文摘要

宇宙学调查中观察到的体积的增加对模拟制剂构成了各种挑战。首先,所需的模拟体积与观测值成比例增加。但是,大容量模拟正在迅速变得计算上棘手。其次,正在进行的和未来的大批量调查是针对较小的物体,例如与较早的焦点相比,发射线星系,即发光的红色星系。他们要求模拟具有更高的质量分辨率。在这项工作中,我们介绍了一种机器学习(ML)方法,通过使用配对的高分辨率(HR)模拟使用相同背景白噪声进行训练,以校准低分辨率(LR)模拟的光晕目录,因此我们可以通过将HR HALO与LR HALO匹配到LR HALO,以一种一对一的方式构建训练数据。训练后,经过校准的LR Halo目录将质量的质量聚类关系降至$ 2.5 \ times 10^{11} 〜h^{ - 1} m_ \ odot $ in $ 5〜我们验证了不同统计数据的性能,包括光晕质量函数,功率谱,两点相关函数以及在真实和红移空间中的双光谱。我们的方法从低分辨率目录($> 25 $颗粒颗粒)中产生了类似高分辨率的光环目录($> 200美元的颗粒),其中包含每个对象的校正光环质量。这允许绕过大批量实际高分辨率模拟的计算负担,而结果的质量分辨率很大。与$ n $ body仿真的成本(例如数百万的CPU小时)相比,我们的ML方法的成本($ \ sim 1 $ CPU小时)可以忽略不计,所需的计算时间缩短了8个。

The increase in the observed volume in cosmological surveys imposes various challenges on simulation preparations. Firstly, the volume of the simulations required increases proportionally to the observations. However, large-volume simulations are quickly becoming computationally intractable. Secondly, on-going and future large-volume survey are targeting smaller objects, e.g. emission line galaxies, compared to the earlier focus, i.e. luminous red galaxies. They require the simulations to have higher mass resolutions. In this work we present a machine learning (ML) approach to calibrate the halo catalogue of a low-resolution (LR) simulation by training with a paired high-resolution (HR) simulation with the same background white noise, thus we can build the training data by matching HR haloes to LR haloes in a one-to-one fashion. After training, the calibrated LR halo catalogue reproduces the mass-clustering relation for mass down to $2.5\times 10^{11}~h^{-1}M_\odot$ within $5~{\rm per~cent}$ at scales $k<1~h\,\rm Mpc^{-1}$. We validate the performance of different statistics including halo mass function, power spectrum, two-point correlation function, and bispectrum in both real and redshift space. Our approach generates high-resolution-like halo catalogues ($>200$ particles per halo) from low-resolution catalogues ($>25$ particles per halo) containing corrected halo masses for each object. This allows to bypass the computational burden of a large-volume real high-resolution simulation without much compromise in the mass resolution of the result. The cost of our ML approach ($\sim 1$ CPU-hour) is negligible compared to the cost of a $N$-body simulation (e.g. millions of CPU-hours), The required computing time is cut a factor of 8.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源