论文标题
相关光谱与多量增强相估计
Correlation spectroscopy with multi-qubit-enhanced phase estimation
论文作者
论文摘要
拉姆西干涉法是一种广泛使用的工具,用于精确测量量子系统的两个能级之间的过渡频率,并在时间保存,精度光谱,量子光学和量子信息中应用。通常,量子系统的连贯性时间超过了探测系统的振荡器之一,从而限制了询问时间和相关的光谱分辨率。相关光谱通过探测两个具有相同嘈杂振荡器的量子系统来测量其过渡频率差,从而克服了这一限制。该技术使原子钟非常精确地比较。在这里,我们将相关光谱扩展到经历了强相关性的多个量子系统的情况下。我们将Ramsey相关光谱与$ N $颗粒建模为多参数相估计问题,并证明多颗粒量子相关性也可以有助于减少测量不确定性,即使没有纠缠。我们针对此问题得出了精确的限制和最佳传感技术,并比较了探针状态的性能和带有和没有纠缠的测量值。使用一二维离子库仑晶体,最多具有91吨位,我们在实验上证明了测量多粒子量子相关性的优势,以减少相位不确定性,并应用相关光谱以测量离子离子距离,过渡频率移位,Laser-Iros驱动,激光 - 离子分裂,Laser-Ion分解和途径长度长度。我们的方法可以直接实现在具有全球互联量子控制和量子脉冲分辨的单弹出读取的实验设置中,因此适用于其他物理系统,例如Tweezer阵列中的中性原子。
Ramsey interferometry is a widely used tool for precisely measuring transition frequencies between two energy levels of a quantum system, with applications in time-keeping, precision spectroscopy, quantum optics, and quantum information. Often, the coherence time of the quantum system surpasses the one of the oscillator probing the system, thereby limiting the interrogation time and associated spectral resolution. Correlation spectroscopy overcomes this limitation by probing two quantum systems with the same noisy oscillator for a measurement of their transition frequency difference; this technique has enabled very precise comparisons of atomic clocks. Here, we extend correlation spectroscopy to the case of multiple quantum systems undergoing strong correlated dephasing. We model Ramsey correlation spectroscopy with $N$ particles as a multi-parameter phase estimation problem and demonstrate that multiparticle quantum correlations can assist in reducing the measurement uncertainties even in the absence of entanglement. We derive precision limits and optimal sensing techniques for this problem and compare the performance of probe states and measurement with and without entanglement. Using one- and two-dimensional ion Coulomb crystals with up to 91 qubits, we experimentally demonstrate the advantage of measuring multi-particle quantum correlations for reducing phase uncertainties, and apply correlation spectroscopy to measure ion-ion distances, transition frequency shifts, laser-ion detunings, and path-length fluctuations. Our method can be straightforwardly implemented in experimental setups with globally-coherent qubit control and qubit-resolved single-shot read-out and is thus applicable to other physical systems such as neutral atoms in tweezer arrays.