论文标题
在不断变化的环境中,在利用文本斑点的环境中进行了强大的板载本地化
Robust Onboard Localization in Changing Environments Exploiting Text Spotting
论文作者
论文摘要
在给定地图中的强大定位是大多数自主机器人的关键组成部分。在本文中,我们解决了在室内环境中定位的问题,该问题在室内环境中发生了变化,而突出结构在不同时间点构建的地图中没有对应关系的问题。为了克服地图与由于这种变化造成的观察到的环境之间的差异,我们利用了人类可读的定位线索来协助定位。这些提示很容易在大多数设施中获得,并且可以通过使用文本斑点来使用RGB摄像机图像来检测。我们使用在2D激光扫描和相机数据上运行的粒子过滤器将这些线索集成到蒙特卡洛本地化框架中。这样,我们为人类行走具有结构性变化和动态的环境提供了强大的本地化解决方案。我们在办公室环境中评估了在多个挑战室内场景上的本地化框架。实验表明,我们的方法对结构变化具有鲁棒性,并且可以在板载计算机上运行。我们(按照纸质接受)发布了方法的开源实现,该实现使用了现成的文本斑点,并用ROS包装器编写了C ++。
Robust localization in a given map is a crucial component of most autonomous robots. In this paper, we address the problem of localizing in an indoor environment that changes and where prominent structures have no correspondence in the map built at a different point in time. To overcome the discrepancy between the map and the observed environment caused by such changes, we exploit human-readable localization cues to assist localization. These cues are readily available in most facilities and can be detected using RGB camera images by utilizing text spotting. We integrate these cues into a Monte Carlo localization framework using a particle filter that operates on 2D LiDAR scans and camera data. By this, we provide a robust localization solution for environments with structural changes and dynamics by humans walking. We evaluate our localization framework on multiple challenging indoor scenarios in an office environment. The experiments suggest that our approach is robust to structural changes and can run on an onboard computer. We release an open source implementation of our approach (upon paper acceptance), which uses off-the-shelf text spotting, written in C++ with a ROS wrapper.