论文标题

概率预测天气的深度学习方法

A Deep Learning Approach to Probabilistic Forecasting of Weather

论文作者

Rittler, Nick, Graziani, Carlo, Wang, Jiali, Kotamarthi, Rao

论文摘要

我们讨论了一种基于两个链接的机器学习步骤的概率预测的方法:一个尺寸的减少步骤,以旨在保留有关预测数量信息的方式,将预测信息的还原图降低到低维空间;以及使用概率机器学习技术来计算减少预测变量和预测量的关节概率密度的密度估计步骤。然后将该关节密度重新规定以产生条件预测分布。在这种方法中,概率校准测试扮演着正规化程序的作用,防止在第二步中过度拟合,而从第一步开始有效尺寸降低是预测清晰度的来源。我们使用22年1小时的节奏时间序列的天气研究和预测(WRF)模拟数据验证了该方法。

We discuss an approach to probabilistic forecasting based on two chained machine-learning steps: a dimensional reduction step that learns a reduction map of predictor information to a low-dimensional space in a manner designed to preserve information about forecast quantities; and a density estimation step that uses the probabilistic machine learning technique of normalizing flows to compute the joint probability density of reduced predictors and forecast quantities. This joint density is then renormalized to produce the conditional forecast distribution. In this method, probabilistic calibration testing plays the role of a regularization procedure, preventing overfitting in the second step, while effective dimensional reduction from the first step is the source of forecast sharpness. We verify the method using a 22-year 1-hour cadence time series of Weather Research and Forecasting (WRF) simulation data of surface wind on a grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源