论文标题
统一的速度限制,热力学不确定性关系和海森堡原理通过散装对应关系
Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence
论文作者
论文摘要
散装的对应关系提供了一个指导原理,用于应对密切相关和耦合系统。在目前的工作中,我们将宽大对应关系的概念应用于经典和量子马尔可夫过程所描述的热力学界限。使用连续矩阵乘积状态,我们将Markov过程转换为量子场,以便Markov过程中的跳跃事件由量子场中的粒子的创建表示。引入连续矩阵乘积状态的时间演变,我们将几何结合应用于其时间演变。我们发现,当我们以系统数量表示绑定时,几何结合将减少到速度限制关系,而基于量子场的数量表示,相同的结合与热力学不确定性关系减少。我们的结果表明,速度限制和热力学不确定性关系是相同几何结合的两个方面。
The bulk-boundary correspondence provides a guiding principle for tackling strongly correlated and coupled systems. In the present work, we apply the concept of the bulk-boundary correspondence to thermodynamic bounds described by classical and quantum Markov processes. Using the continuous matrix product state, we convert a Markov process to a quantum field, such that jump events in the Markov process are represented by the creation of particles in the quantum field. Introducing the time evolution of the continuous matrix product state, we apply the geometric bound to its time evolution. We find that the geometric bound reduces to the speed limit relation when we represent the bound in terms of the system quantity, whereas the same bound reduces to the thermodynamic uncertainty relation when expressed based on quantities of the quantum field. Our results show that the speed limit and thermodynamic uncertainty relations are two aspects of the same geometric bound.