论文标题

罗宾逊空间中的模块

Modules in Robinson Spaces

论文作者

Carmona, Mikhael, Chepoi, Victor, Naves, Guyslain, Préa, Pascal

论文摘要

鲁滨逊空间是一个不同的空间$(x,d)$(即$ n $的$ x $和$ x $上的差异$ d $),在$ x $上存在总订单$ <$ <y <z $,因此$ x <y <z $暗示$ x <z $ d(x,x,x,x,z)认识到差异空间是鲁滨逊在序列和分类中都有许多应用。 $(x,d)$的mmodule(概括图理论中的模块的概念)是$ x $的子集$ m $,与$ m $的外部没有区别,即,距$ x \ setminus m $的任何点的距离到$ m $的所有点是相同的。如果$ p $是$ x $的任何点,则$ \ {p \} $和不包含包含$ p $的$(x,d)$的包含mmodules的最大值定义了$ x $的分区,称为Copoint分区。在本文中,我们研究了鲁滨逊空间中的mmodules的结构,并使用它和Copoint分区来设计一种简单且实用的分界线和争议算法,以识别最佳$ O(N^2)$时间的Robinson空间。

A Robinson space is a dissimilarity space $(X,d)$ (i.e., a set $X$ of size $n$ and a dissimilarity $d$ on $X$) for which there exists a total order $<$ on $X$ such that $x<y<z$ implies that $d(x,z)\ge \max\{ d(x,y), d(y,z)\}$. Recognizing if a dissimilarity space is Robinson has numerous applications in seriation and classification. An mmodule of $(X,d)$ (generalizing the notion of a module in graph theory) is a subset $M$ of $X$ which is not distinguishable from the outside of $M$, i.e., the distance from any point of $X\setminus M$ to all points of $M$ is the same. If $p$ is any point of $X$, then $\{ p\}$ and the maximal by inclusion mmodules of $(X,d)$ not containing $p$ define a partition of $X$, called the copoint partition. In this paper, we investigate the structure of mmodules in Robinson spaces and use it and the copoint partition to design a simple and practical divide-and-conquer algorithm for recognition of Robinson spaces in optimal $O(n^2)$ time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源